Kamis, 06 Mei 2010

KEGIATAN KLASIFIKASI KAPAL

Klasifikasi kapal merupakan kewajiban para pemilik kapal berbendera Indonesia sesuai dengan Keputusan Menteri Perhubungan yang menyatakan bahwa kapal - kapal yang wajib klas adalah kapal - kapal dengan ketentuan :

  • Panjang > 20 m dan atau
  • Tonase > 100 m3 dan atau
  • Mesin Penggerak > 100 PK dan atau
  • Yang melakukan pelayaran Internasional meskipun telah memiliki Sertifikat dari Biro Klasifikasi Asing.
Lingkup klasifikasi kapal meliputi :
  • Lambung kapal, instalasi mesin, instalasi listrik, perlengkapan jangkar.
  • Instalasi pendingin yang terpasang permanen dan merupakan bagian dari kapal.
  • Semua perlengkapan dan permesinan yang di pakai dalam operasi kapal.
  • Sistem konstruksi dan perlengkapan yang menentukan tipe kapal.
Sebelum kapal dapat diregister di BKI, maka kapal tersebut harus memenuhi persyaratan dan peraturan teknik BKI. Pemenuhan tersebut melalui proses persetujuan gambar teknik yang selanjutnya dilakukan survey di lapangan.

Untuk kapal yang dibangun sesuai dengan persyaratan peraturan klasifikasi akan ditetapkan notasi klas kapal tersebut pada saat selesainya pemeriksaan secara keseluruhan melalui survey klasifikasi dengan hasil yang memuaskan. Untuk kapal yang sudah dioperasikan, BKI juga melasanakan survey periodik untuk menjamin bahwa kapal masih memenuhi persyaratan klasifikasi tersebut. Seandainya terjadi kerusakan yang mungkin berpengaruh terhadap kondisi klasifikasi diantara masa survey periodik, maka pemilik kapal dan/atau operatornya diwajibkan menginformasikan kerusakan tersebut kepada BKI.

Dalam melaksanakan proses klasifikasi, BKI mengimplementasikan Peraturan Teknik, meliputi :
  • Evaluasi teknis terhadap rencana desain dan dokumen yang berkaitan dengan kapal yang akan dibangun untuk memeriksa pemenuhan terhadap peraturan yang berlaku;
  • Melaksanakan survey dan pemeriksaan proses konstruksi kapal di galangan kapal oleh surveyor klasifikasi dan juga pemeriksaan pada fasilitas produksi yang menghasilkan komponen utama kapal, seperti pelat baja, permesinan, generator, propeler dll untuk menjamin bahwa kapal dan komponennya dibangun sesuai dengan persyaratan klasifikasi;
  • Pada saat selesainya pembangunan tersebut diatas dan berdasarkan laporan hasil pemeriksaan selama pembangunan, bila seluruh persyaratan dipenuhi, maka BKI akan menerbitkan sertifikat klasifikasi.
  • Pada saat kapal tersebut beroperasi / berlayar, pemilik kapal harus mengikuti program survey periodik dan diluar survey periodik untuk memeriksa kondisi kapal tersebut agar tetap sesuai dengan kondisi dan persyaratan untuk mempertahankan klasifikasinya.
Kapal yang sudah memiliki klasifikasi, diwajibkan untuk terus melaksanakan survey yang dipersyaratkan untuk mempertahankan status klasifikasinya. Jenis-jenis survey periodik ini, antara lain survey pembaruan kelas (class renewal), survey tahunan (annual survey), survey antara (intermediate survey) dan survey dok (docking/bottom survey). Selain itu survey poros baling-baling, boiler, permesinan dan survey khusus lainnya sesuai dengan persyaratan klasifikasi. BKI akan menerbitkan survey status dan diinformasikan kepada pemilik.

Klasifikasi kapal dilaksanakan berdasarkan pengertian bahwa kapal dimuati, dioperasikan dan dirawat dengan cara yang benar oleh awak kapal yang kompeten dan berkualifikasi. Pemilik kapal bertanggung jawab untuk menjamin bahwa perawatan kapal dilakukan dengan cara yang benar hingga survey periodik berikutnya sesuai persyaratan. Juga menjadi kewajiban pemilik kapal atau yang mewakilinya untuk menginformasikan kepada surveyor klasifikasi saat survey diatas kapal, semua kejadian atau kondisi yang berpengaruh terhadap status klasifikasi.

Bila kondisi mempertahankan klasifikasi ini tidak dipenuhi, maka BKI akan menangguhkan (suspend) atau mencabut (withdrawn) status klasifikasinya berdasarkan referensi persyaratan klasifikasi. Kapal mungkin akan kehilangan status klasifikasinya untuk sementara atau secara permanen. Demikian juga, kapal yang tidak melaksanakan survey periodik tepat waktu sesuai dengan peraturan klasifikasi, maka BKI akan menangguhkan (suspend) status klasifikasinya.

Surveyor Klasifikasi dalam melaksanakan survey meliputi :
  • Keseluruhan pemeriksaan item survey sesuai dengan daftar isian yang didesain sesuai dengan persyaratan klasifikasi;
  • Pemeriksaan yang lebih mendetail terhadap bagian-bagian tertentu;
  • Menyaksikan (witness) proses pengujian (testing), pengukuran (measurement) dan percobaan (trial) untuk meyakinkan pemenuhan terhadap persyaratan klasifikasi.
Bilamana surveyor menemukan korosi, kerusakan struktur atau kerusakan lambung kapal, permesinan dan peralatan terkait dimana menurut opini surveyor akan mempengaruhi status klasifikasi kapal tersebut, maka surveyor akan mengeluarkan rekomendasi untuk mengatasi ketidak-sesuaian tersebut diatas. Rekomendasi tersebut wajib dilaksanakan oleh pemilik kapal untuk melakukan tindakan perbaikan dan repair pada periode waktu tertentu dalam rangka mempertahankan klasifikasinya.

Semua status klasifikasi kapal, berupa sertifikat dan laporan survey yang dikeluarkan oleh BKI dijadikan referensi dalam pengambilan keputusan oleh pihak-pihak yang terlibat dalam operasional kapal tersebut. Pihak asuransi mempergunakannnya untuk menetapkan premi asuransi dan klaim asuransi, pihak pemilik muatan mempergunakannya untuk jaminan bahwa muatannya diangkut oleh kapal yang laik, pihak pemilik kapal mempergunakannya untuk mengetahui status kondisi kapal dan perawatannya serta untuk kepentingan komersial memasarkan jasanya angkutannya dan pihak Pemerintah mempergunakannya sebagai law enforcement untuk memberikan clearance atau surat ijin berlayar.
POROS PROPELLER UNTUK PEMUTAR BALING-BALING

Poros propeler mirip tongkat panjang dari baja untuk memutar baling-baling....Dalam pemasangan kemudi yang tidak segaris dengan sumbu propeller terhadap kemampuan maneuvering kapal. Dari percobaan tersebut hanya dibahas interaksi antara peletakan kemudi dan lambung. Namun dalam penelitian ini dibahas interaksi antara propeller dan peletakan kemudi.

Permasalahan utama pergeseran letak kemudi adalah pada saat inspeksi terhadap poros propeller poros kemudi juga ikut dicopot karena letak kemudi yang segaris dengan sumbu poros propeller. Dengan adanya pergeseran ini pengaruh terhadap kemampuan maneuvering kapal juga ditinjau. Dari pergeseran letak kemudi akan dicari nilai gaya lift (gaya pada yang mengakibatkan kapal berbelok) paling besar terhadap variasi peletakan kemudi dan arah putaran propeller.

Dalam penelitian ini akan disimulasikan pergerakan aliran fluida menggunakan software yang berbasis Computational Fluid Dynamics (CFD), untuk menganalisa pressure, gaya lift dan gaya drag yang terjadi rudder. Rudder akan divariasikan dalam berbagai jarak dan dimodifikasi dalam beberapa sudut gerak rudder. Dalam percobaan studi kasus propeller yang yang dipakai memiliki sudut 1,320 terhadap centerline kapal. Dari hasil simulasi yang telah dilakukan terlihat bahwa konfigurasi kemudi di sebelah luar propeller (outward) memiliki gaya lift (gaya untuk manuvering kapal) yang lebih besar dari pada peletakan kemudi di dua tempat yang lain (center dan inward)

MESIN 4 TAK


Four stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah tenaga memerlukan empat proses langkah naik-turun piston, dua kali rotasi kruk as, dan satu putaran noken as (camshaft).

Empat proses tersebut terbagi dalam siklus :

Langkah hisap : Bertujuan untuk memasukkan kabut udara – bahan bakar ke dalam silinder. Sebagaimana tenaga mesin diproduksi tergantung dari jumlah bahan-bakar yang terbakar selama proses pembakaran.

Prosesnya adalah ;

  1. Piston bergerak dari Titik Mati Atas (TMA) menuju Titik Mati Bawah (TMB).
  2. Klep inlet terbuka, bahan bakar masuk ke silinder
  3. Kruk As berputar 180 derajat
  4. Noken As berputar 90 derajat
  5. Tekanan negatif piston menghisap kabut udara-bahan bakar masuk ke silinder

—————————————————————————————————————————————–

LANGKAH KOMPRESI

Langkah Kompresi

Langkah Kompresi

Dimulai saat klep inlet menutup dan piston terdorong ke arah ruang bakar akibat momentum dari kruk as dan flywheel.

Tujuan dari langkah kompresi adalah untuk meningkatkan temperatur sehingga campuran udara-bahan bakar dapat bersenyawa. Rasio kompresi ini juga nantinya berhubungan erat dengan produksi tenaga.

Prosesnya sebagai berikut :

  1. Piston bergerak kembali dari TMB ke TMA
  2. Klep In menutup, Klep Ex tetap tertutup
  3. Bahan Bakar termampatkan ke dalam kubah pembakaran (combustion chamber)
  4. Sekitar 15 derajat sebelum TMA , busi mulai menyalakan bunga api dan memulai proses pembakaran
  5. Kruk as mencapai satu rotasi penuh (360 derajat)
  6. Noken as mencapai 180 derajat

—————————————————————————————————————————————–

LANGKAH TENAGA

Langkah Tenaga

Langkah Tenaga

Dimulai ketika campuran udara/bahan-bakar dinyalakan oleh busi. Dengan cepat campuran yang terbakar ini merambat dan terjadilah ledakan yang tertahan oleh dinding kepala silinder sehingga menimbulkan tendangan balik bertekanan tinggi yang mendorong piston turun ke silinder bore. Gerakan linier dari piston ini dirubah menjadi gerak rotasi oleh kruk as. Enersi rotasi diteruskan sebagai momentum menuju flywheel yang bukan hanya menghasilkan tenaga, counter balance weight pada kruk as membantu piston melakukan siklus berikutnya.

Prosesnya sebagai berikut :

  1. Ledakan tercipta secara sempurna di ruang bakar
  2. Piston terlempar dari TMA menuju TMB
  3. Klep inlet menutup penuh, sedangkan menjelang akhir langkah usaha klep buang mulai sedikit terbuka.
  4. Terjadi transformasi energi gerak bolak-balik piston menjadi energi rotasi kruk as
  5. Putaran Kruk As mencapai 540 derajat
  6. Putaran Noken As 270 derajat

—————————————————————————————————————————————–

LANGKAH BUANG

Exhaust stroke

Exhaust stroke

Langkah buang menjadi sangat penting untuk menghasilkan operasi kinerja mesin yang lembut dan efisien. Piston bergerak mendorong gas sisa pembakaran keluar dari silinder menuju pipa knalpot. Proses ini harus dilakukan dengan total, dikarenakan sedikit saja terdapat gas sisa pembakaran yang tercampur bersama pemasukkan gas baru akan mereduksi potensial tenaga yang dihasilkan.

Prosesnya adalah :

  1. Counter balance weight pada kruk as memberikan gaya normal untuk menggerakkan piston dari TMB ke TMA
  2. Klep Ex terbuka Sempurna, Klep Inlet menutup penuh
  3. Gas sisa hasil pembakaran didesak keluar oleh piston melalui port exhaust menuju knalpot
  4. Kruk as melakukan 2 rotasi penuh (720 derajat)
  5. Noken as menyelesaikan 1 rotasi penuh (360 derajat)

—————————————————————————————————————————————–

FINISHING PENTING — OVERLAPING

Overlap adalah sebuah kondisi dimana kedua klep intake dan out berada dalam possisi sedikit terbuka pada akhir langkah buang hingga awal langkah hisap.

Berfungsi untuk efisiensi kinerja dalam mesin pembakaran dalam. Adanya hambatan dari kinerja mekanis klep dan inersia udara di dalam manifold, maka sangat diperlukan untuk mulai membuka klep masuk sebelum piston mencapai TMA di akhir langkah buang untuk mempersiapkan langkah hisap. Dengan tujuan untuk menyisihkan semua gas sisa pembakaran, klep buang tetap terbuka hingga setelah TMA. Derajat overlaping sangat tergantung dari desain mesin dan seberapa cepat mesin ini ingin bekerja.

manfaat dari proses overlaping :

  1. Sebagai pembilasan ruang bakar, piston, silinder dari sisa-sisa pembakaran
  2. Pendinginan suhu di ruang bakar
  3. Membantu exhasut scavanging (pelepasan gas buang)
  4. memaksimalkan proses pemasukkan bahan-bakar

Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.

Benda akan seimbang jika pas diletakkan di titik beratnya

Benda akan seimbang jika pas diletakkan di titik beratnya

Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.

Mari kita tinjau suatu benda tegar, misalnya tongkat pemukul kasti, kemudian kita lempar sambil sedikit berputar. Kalau kita perhatikan secara aeksama, gerakan tongkat pemukul tadi dapat kita gambarkan seperti membentuk suatu lintasan dari gerak translasi yang sedang dijalani dimana pada kasus ini lintasannya berbentuk parabola. Tongkat ini memang berputar pada porosnya, yaitu tepat di titik beratnya. Dan, secara keseluruhan benda bergerak dalam lintasan parabola. Lintasan ini merupakan lintasan dari posisi titik berat benda tersebut.

Demikian halnya seorang peloncat indah yang sedang terjun ke kolam renang. Dia melakukan gerak berputar saat terjun. sebagaimana tongkat pada contoh di atas, peloncat indah itu juga menjalani gerak parabola yang bisa dilihat dari lintasan titik beratnya. Perhatikan gambar berikut ini.

seorang yang meloncat ke air dengan berputar

seorang yang meloncat ke air dengan berputar

Jadi, lintasan gerak translasi dari benda tegar dapat ditinjau sebagai lintasan dari letak titik berat benda tersebut. Dari peristiwa ini tampak bahwa peranan titik berat begitu penting dalam menggambarkan gerak benda tegar.

Cara untuk mengetahui letak titik berat suatu benda tegar akan menjadi mudah untuk benda-benda yang memiliki simetri tertentu, misalnya segitiga, kubus, balok, bujur sangkar, bola dan lain-lain. Yaitu d sama dengan letak sumbu simetrinya. Hal ini jelas terlihat pada contoh diatas bahwa letak titik berat sama dengan sumbu rotasi yang tidak lain adalah sumbu simetrinya.

Orang ini berada dalam keseimbangan

Orang ini berada dalam keseimbangan

Di sisi lain untuk benda-benda yang mempunyai bentuk sembarang letak titik berat dicari dengan perhitungan. Perhitungan didasarkan pada asumsi bahwa kita dapat mengambil beberapa titik dari benda yang ingin dihitung titik beratnya dikalikan dengan berat di masing-masing titik kemudian dijumlahkan dan dibagi dengan jumlah berat pada tiap-tiap titik. dikatakan titik berat juga merupakan pusat massa di dekat permukaan bumi, namun untuk tempat yang ketinggiannya tertentu di atas bumi titik berat dan pusat massa harus dibedakan.